National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Three-dimensional Spring Networks and Their Applications
Štafa, Michal ; Brožovský, Jiří (referee) ; Keršner, Zbyněk (referee) ; Frantík, Petr (advisor)
The presented work highlights the remarkable potential of physical discretization – lattice model FyDiK in three-dimensional modelling of non-linear problems in structural mechanics. To achieve the objectives a software application, that implements the model FyDiK along with the 3D graphical user interface has been developed and thus is able to assemble a spring network model. Such a model was used for modelling the formation of cracks and fracture in the concrete specimens and also to model a plastic behaviour of steel I-beam. The calculations were performed by a massive parallelization on CUDA platform. In the first part the basic principles on which the work is based are introduced. Subsequently, a detailed description of individual parts of the model and the issue of parallelization by graphics cards are presented. In the next part the creation of the required software and improving of the model properties of mentioned materials are described. That is followed by evaluation of the achieved results with the comparison of other modelling software. The conclusion summarizes the achievements and suggestions for the further development possibilities of the presented method of modelling.
Three-dimensional Spring Networks and Their Applications
Štafa, Michal ; Brožovský, Jiří (referee) ; Keršner, Zbyněk (referee) ; Frantík, Petr (advisor)
The presented work highlights the remarkable potential of physical discretization – lattice model FyDiK in three-dimensional modelling of non-linear problems in structural mechanics. To achieve the objectives a software application, that implements the model FyDiK along with the 3D graphical user interface has been developed and thus is able to assemble a spring network model. Such a model was used for modelling the formation of cracks and fracture in the concrete specimens and also to model a plastic behaviour of steel I-beam. The calculations were performed by a massive parallelization on CUDA platform. In the first part the basic principles on which the work is based are introduced. Subsequently, a detailed description of individual parts of the model and the issue of parallelization by graphics cards are presented. In the next part the creation of the required software and improving of the model properties of mentioned materials are described. That is followed by evaluation of the achieved results with the comparison of other modelling software. The conclusion summarizes the achievements and suggestions for the further development possibilities of the presented method of modelling.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.